6,096 research outputs found

    Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31

    Get PDF
    When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (alpha-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C-terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while alpha-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody alpha-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.published_or_final_versio

    Effect of alendronate on bone remodeling around implant in the rat

    Get PDF
    published_or_final_versio

    First report of Perkinsus honshuensis in the variegated carpet shell clam Ruditapes variegatus in Korea

    Get PDF
    The recent discovery of Perkinsus honshuensis, a new Perkinsus species infecting Manila clams Ruditapes philippinarum (Sowerby, 1852), in Japan, suggested that, based on proximity, P. honshuensis could also be in Korean waters, where to date, P. olseni was believed to be the only Perkinsus species present. Perkinsus sp. infections consistently occurred among Ruditapes variegatus clams on a pebble beach on Jeju Island, off the south coast of Korea. The typical \u27signet ring\u27 morphology of the parasite was observed in the connective tissue of the digestive gland, and infection intensity was comparatively low (3.3 x 10(3) +/- 1.2 x 10(4) to 1.3 x 10(4) +/- 6.1 x 10(4) cells g(-1) gill weight). Further DNA analyses of internal transcribed spacer (ITS-1, 5.8S and ITS-2) and non-transcribed spacer (NTS) regions of the parasite showed 98.9-99.8 and 98.5-99.5% similarity to those of P. honshuensis from Japan, respectively. Phylogenetic analyses using ITS and NTS sequences indicated that Perkinsus sp. from Jeju formed a highly supported clade with P. honshuensis. This is the first report of P. honshuensis infections in clams in Korean waters and the first report of R. variegatus as a host for that parasite

    Conversion of the random amplified polymorphic DNA (RAPD) marker UBC#116 linked to Fusarium crown and root rot resistance gene (Frl) into a co-dominant sequence characterized amplified region (SCAR) marker for marker-assisted selection of tomato

    Get PDF
    Fusarium crown and root rot of tomato (Solanum lycopersicum) is the disease caused by the fungal pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL). The most effective way to control this disease is to plant resistant varieties. Markers tightly linked to Fusarium crown and root rot could be used in breeding programs to introgress crown rot resistance into new varieties. In this study, we converted the random amplified polymorphic DNA (RAPD) marker UBC#116, linked to the Fusarium crown and root rot resistance gene (Frl), into a co-dominant sequence characterized amplified region (SCAR) marker. A fragment of about 480 bp, linked to the Frl gene, was polymerase chain reaction (PCR) amplified with the use of the UBC#116 primers, cloned and sequenced. A pair of primers were designed and PCR amplification was performed to develop a new SCAR marker for the Frl gene. The new marker was applied for the analysis of 96 tomato genotypes. The RAPD marker UBC#116 was also used and it revealed that the markers were equivalent to each other. However, the development of the new co-dominant SCAR marker has made marker-assisted selection (MAS) more practical, rapid and efficient.Key words: Fusarium oxysporum f. sp. radicis-lycopersicum (FORL), marker-assisted selection (MAS), Solanum lycopersicum, breeding

    Complete gate control of supercurrent in graphene p-n junctions

    Get PDF
    In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.open114344sciescopu

    The estrogen-related receptor alpha upregulates secretin expressions in response to hypertonicity and angiotensin II stimulation

    Get PDF
    Osmoregulation via maintenance of water and salt homeostasis is a vital process. In the brain, a functional secretin (SCT) and secretin receptor (SCTR) axis has recently been shown to mediate central actions of angiotensin II (ANGII), including initiation of water intake and stimulation of vasopressin (VP) expression and release. In this report, we provide evidence that estrogen-related receptor Ī± (ERRĪ±, NR3B1), a transcription factor mainly involved in metabolism, acts as an upstream activator of the SCT gene. In vitro studies using mouse hypothalamic cell line N-42 show that ERRĪ± upregulates SCT promoter and gene expression. More importantly, knockdown of endogenous ERRĪ± abolishes SCT promoter activation in response to hypertonic and ANGII stimulations. In mouse brain, ERRĪ± coexpresses with SCT in various osmoregulatory brain regions, including the lamina terminalis and the paraventricular nucleus of the hypothalamus, and its expression is induced by hyperosmotic and ANGII treatments. Based on our data, we propose that both the upregulation of ERRĪ± and/or the increased binding of ERRĪ± to the mouse SCT promoter are two possible mechanisms for the elevated SCT expression upon hyperosmolality and central ANGII stimulation. Ā© 2012 Lee et al.published_or_final_versio
    • ā€¦
    corecore